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Formulas to calculate the energies of the hybridized valence states are given. The formulas cover 
any of the hybridized valence states, so far as the valence orbitals involved are s - p hybrids, and are 
useful in the sense that they give essentially the same results as those obtained with the modified 
(3pik method [1] quickly. The prescriptions and the numerical data for the actual evaluation of the 
hybridized valence-state energies are also given with particular reference to the atoms and the ions 
of carbon, nitrogen, and oxygen. In Appendix, addenda and corrigenda of the previous paper [1] 
are given. 
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1. Introduction 

In a previous paper [1], it has been pointed out that off-diagonal terms, 
corresponding to interactions among multiplets of the same symmetry arising 
from different configurations participating in the hybridized valence state, must 
also be considered in addition to the diagonal terms considered in Opik's 
method for evaluation of the hybridized valence-state energies [-2], in order that 
Moffitt's [-3] philosophy of defining the valence state be preserved even for the 
hybridized valence states. This modified Opik method however is too compli- 
cated to be used. Therefore, formulas useful for the evaluation of the energies 
of hybridized valence states in the sense that they give essentially the same results 
as those obtained with the modified Opik method quickly have been derived, 
although we have confined ourselves to those valence states which involve s - p  

hybrid AO's only. It is the purpose of the present paper to present such formulas 
and to give the prescriptions for the actual evaluation of the hybridized 
valence-state energies of the atoms and the ions of carbon, nitrogen, and 
oxygen. 

2. Derivation of Formulas 

Since we are confining ourselves to valence states involving s - p  hybrid orbi- 
tals only, the atomic orbitals containing valence electrons may be expressed 
as 

ti = c~is + CxlX + cyiy + CziZ ( i  = 1, 2, 3, 4) (1) 
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without  toss of generality. In Eq. (1), s, x, y, and z represent the s, p~, Pr, and the 
p~ AO, respectively, while %, c~, c~, and % are numerical coefficients subject 
to the or thonormalizat ion condit ions of t~'s. The formulas to be presented are 
then as follows: 

2 E(s, V1) -  (1 - c~1) E(x, V1) O, E ( t l ,  1/1) - csi = . (2) 

- q½) ~ ( x y ,  v : )  E( t  I t2, V2) - -  (C21 "1- Cs22) E(SX, V2) - -  (1 - % 

2 2 = (1/2) c,i c,2 Q,  
(3) 

E( t  2, Vo ) _ Cs 12 E(s  2, Vo ) _ (1 - c21) E ( x  2, Vo) = 2 2 c~l (C~i - 1) Q (4) 

E( t  1 t 2 t3, 1/3) - (1 - Cs 2 )  E ( s x y ,  ]73) - c24 E ( x y z ,  V3) 

2 2 2 2 2 = (1/2) (c~l c~2 + c,1 c,a + c~2 c~3) Q ,  
(5) 

E ( t ~ t 2 ,  V1)-  (2c 2, + c~22 - 1) E ( s 2 x ,  V1) 

- (2 - 2c~l - c, 2 )  E ( s x : ,  Vl)  

2 2 2 -  Cs2z + 1) Q -~ (Cs41 -~- Csl Cs2 -- 2c~i 

5(C21 2 1) R 
- -  ~- Cs2 - -  , 

(6) 

E( t  1 t 2 t 3 t4, V4) -- E ( s x y z ,  ]/74) -'~ (1 /4 )  1 - c~i Q ,  
i=1 

2 + C~,) E ( s x 2 y ,  [/2) E ( t  2 t 2/73, V2) - (c21 - Cs 2 )  E ( s 2 x y ,  V2) - (1 - Csx 

: [Cs2 - -  Cs 12 c~,2 + (1/2) c~2 c~332 Q + 5 c ~ , R  

(7) 

(s)  

e ( t ~  t~, Vo) - '  2 2 : - c~½) ~ ( x 2 y  ~, Vo) ~,Csl -t- Cs2 ) E ( s 2 x  2, ]/0) -- (1 - % 

2 2 2 1) Q ,  = ( c ~  + c ~ )  ( c ~  + c ~  - 
(9) 

2 E ( d  x y z ,  V3) - (1 - c~,) E ( s x  2 yz ,  V3) E(t~ t 2 t3 t4, V3) - Csl 

(1/2)  2 2 2 2 ~ c~4)Q = (Cs2 Cs3 + cs2 Cs4 + Cs3 , 
( l o )  

E ( t  2 t 2 t3, 1/1) 2 2 -- (Cs 2 + Cs2 -- Cs4 ) E ( s 2 x 2 y ,  V1) 

2 c~4) E ( s x Z y  2, V1) - (1 - c~1 - cs2 + 

2 2 5 c ~ 4 R ,  = c2A1 - c~1 - c~2) (2 + 

(11) 

2 2 E ( t  2 t 2 t 3 t 4, V2) - (1 - c~3 - c~4 ) E(sZ x2 yz ,  V2) 

-- (Cs23 + Cs24) E ( s x 2 y 2 z ,  2 2 . V z ) = ( 1 / 2 ) q 3 c ~ , ~ Q ,  
(12) 

E (  t2 t2 t23, Vo) - (1 - c~ 2 ) E ( s Z x 2 y  2, Vo) 

2 2 2 2 - c ~ 4  E ( x  y z , Vo) 2 2 = c~,(c~4 - 1) Q ,  

~ 2 :  E ( q  t 2 t 3 t 4, Vi ) - (1 - c~,) E(s2  x2 yZ z, 1/1) - c~, E ( s x Z  yZ z 2, V1) = O . 

(13) 

(14) 
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In Eqs. (2)-(14), Q and R are the following combinations of the usual electron 
repulsion integrals: 

Q = (ss[ss) + ( x x l x x ) -  2 ( s s l x x ) -  4(sxlsx) ,  

R = (sx] sx) - ( xy lxy ) .  (15) 

The idea underlying our formulas is to express the energy of a hybridized 
valence state with reference to an appropriate weighted mean of energies of a 
pair of unhybridized valence states, in such a way that the core energies which 
are difficult to estimate do not appear in the formulas. The choice of the 
weights and the reference unhybridized valence states is, however, not unique. 
Our choice is based on the requirements that the resulting formula is as com- 
pact as possible and that the reliable values of the reference unhybridized 
valence-state energies are easily available. 

Formulas (2)-(14) may be proved in the following ways: 
(i) Write the energy expressions of the hybridized valence states in terms of 

the one- and the two-electron integrals over hybrid AO's. 
(ii) Expand these integrals in terms of integrals over unhybridized AO's, 

using Eq. (1). The energy expressions of the hybridized valence states in terms 
of integrals over unhybridized AO's will then be obtained. 

(iii) Write the energy expressions of the unhybridized valence states appearing 
in the left-hand sides of Eqs. (2)-(14) in terms of integrals over unhybridized 
AO's. 

(iv) Make the expressions of the left-hand sides of Eqs. (2)-(14), using the 
valence-state energy expressions obtained in (ii) and (iii) above. Equations (2)-(14) 
will then be obtained by using assumptions for the one- and the two-electron 
integrals, which are best described with reference to some examples. Let us take 
Eq. (10) as an example. If one looks at the expressions of the quantities 

E(t 2 t2 t3 t4, V3), (16) 

E(s2xyz, V3), (17) 

E(sx 2 yz, V3) , (18) 

obtained in (ii) and (iii) above, one will find that integrals such as Hss (one- 
electron core integral over s AO) and (sslzz) appear in the expressions of all of 
(16)-(18). We assume that the value of a given one of such integrals in (16) is 
equal to the weighted mean of the values of that integrals in (17) and (18) with 

2 and ( 1 -  2 weights csl esl), respectively. The second of our assumptions is con- 
cerned with those integrals which appear in not all of (16)-(18); we assume that 
the value of a given one of such integrals is independent of the electron con- 
figuration. 

Equations (2)-(14) can also be obtained by using the modified Opik method 
[-1] for the hybridized valence states and Moffitt's method [-3] for the unhybridi- 
zed valence states, if the orbital approximation and the set of assumptions on 
the equalities among the integrals mentioned in the preceding paragraph are 
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adopted for the difference between the hybridized valence-state energy and the 
weighted mean of the energies of the pair of the unhybridized valence states, 
given as the left-hand side of each of Eqs. (2)-(14). It is to be noted that 
Eqs. (7), (8), and (10) have already been derived by the present author [43 for 
special cases where cs4 = 0. 

3. Numerical Evaluation 

To evaluate the energies of hybridized valence states with Eqs. (2)-(14), those 
of unhybridized valence states must be determined first. These values are pref- 
erably determined directly from the observed term values as described by 
Moffitt [-3]. AlthoughPritchard and Skinner [5] have already given such results, 
we have determined the energies of all the unhybridized valence states belonging 
to the configurations of ls22sm2p" (m=0, 1,2; n=0,  1 .... 6) for the neutral 
atoms, the singly-negative ions, and the singly- and the doubly-positive ions of 
carbon, nitrogen, and oxygen with Moffitt's procedure. The results are given in 
Table 1. The observed term values have been taken from Moore's table [6] by 
averaging out the fine structure, each component of a particular term being given 
a weight of 2J + 1. When no observed term values are available, the values 
obtained by extrapolation along isoelectronic series, have been used. In doing 
extrapolations, quadratic functions of atomic number have been used for most 
cases, but linear function had to be used for ls z 2p 5 2p for lack of data, while 
cubic functions have been used for 1S 2 2p 6 1S, ls z 2S 2 2p 5 2p, and l s  2 2s 2 2p ~ 3p, 
because term values extrapolated for the negative ions using quadratic functions 
have turned out to be higher than those of the neutral atoms for these isoelectronic 
series; one would expect that the term value of a given term should decrease with 
decreasing (positive) ionic charge along isoelectronic series. For the ls 2 2p 4 con- 
figuration, reliable term values are available only for O 2+, so that no inter- 
or extrapolation is possible for this isoelectronic series. The energies of the valence 
states of C and N + belonging to this configuration have therefore been deter- 
mined from the semiempirical values of the average energy Ear of the configura- 
tion and of F2(2p, 2p) given by Anno and Teruya-[7]. 

Another data necessary for using Eqs. (2)-(14) are the values of the quanti- 
ties Q and R defined by Eqs. (15). The values of (xy lxy)  and (sx[sx) may be 
evaluated from FZ(2p, 2p) and Gl(2s, 2p), respectively, since it holds that 

(xy l xy) = (3/25) FZ(pp) , 

(sxlsx) = (1/3) G 1 (sp). 

(19) 

(20) 

The Q value on the other hand may be evaluated from the energy change A E 
of the reaction 

2A(sxymz ") --* A(sZy"z  ") + A(xZymz ") (21) 

and the (sx[sx) value determined by Eq. (20), since it can be shown that 

A E = (ss[ss) + (xx[xx)  - 2(sslxx)  + (sx[sx) (22) 
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Table 1. Energies of valence states of atoms and ions of carbon, nitrogen, and oxygen as calculated 
with Moffitt's method (eV) a 

Valence state Energy Valence state Energy 

sx, V 2 C 2+ 8.0392 x2y 2, V0 C 20.7225 b 
xy, V 2 C 2+ 17.2946 N + 30.0113 b 
x 2, V 0 C 2+ 19.5939 O z+ 38.8301 
s2x, V x C + 0.0053 sZxyz, V s C-  (0.7243) 
(=s2p, 2p) N 2+ 0.0144 N 1.1915 
sxy, V 3 C + 8.4172 O + 1.6619 

N 2+ 11.2025 s2x2y, V 1 C- (1.8063) 
sx 2, V 1 C + 10.1780 N 2.9787 

N z+ 13.7599 O + 4.1696 
xyz, V a C + 18.1258 sx2yz, V a C-  (9.1461) 

N 2+ 24.1612 N (14.1669) 
xZy, V t C + 19.7816 O + 19.1647 

N 2+ 26.8635 sx2y 2, V1 C- (10.2282) 
s2xy, V 2 C 0.3187 N (16.0406) 

N + 0.4828 O + 21.8010 
0 2+ 0.6474 x2y2z, V l C-  (18.7542) 

s2x 2, V 0 C 1.7367 (=pS, 2p) N (29.0878) 
N + 2.6160 O + (39.4215) 
0 2+ 3.4590 s2x2yz, V2 N-  (0.3398) 

sxyz, V4 C 8.2605 O 0.4989 
N + 11.9532 S2x2y 2, V o N-  (1.8503) 
O 2+ 15.3933 O 2.7072 

sx2y, V 2 C 9.8502 sx2yZz, V z N-  (12.4735) 
N + 14.1812 O 17.6229 
O 2+ 18.3555 x2y2z 2, V 0 N-  (24.2436) 

x2yz, V 2 C 18.8124 b (=p6, tS) O (36.2761) 
N + 27.1765 b s2xZyZz, V 1 O -  (0.0061) 
0 2+ 35.6297 (=s2pS, 2p) 

sx2y2z 2, V 1 O -  (14.9792) 
(=sp 6, 28) 

a The valence state energies given are referred to the ground states of the respective atoms or ions. 
The observed term values necessary for the evaluation of the valence-state energies have been 
taken from Moore I-6] by averaging out the fine structure, each component of a particular term 
being given a weight of 2J + 1. If no observed term value is available, the value obtained by 
extrapolation along isoelectronic series has been used. The valence-state energies based on such 
extrapolated term values are enclosed in parentheses. See Section 3 of text for detail. 

b For isoelectronic series atoms with ls 2 2p 4 configuration, reliable term values are available only 
for O z+, so that no inter- or extrapolation is possible for this isoelectronic series. The energies of 
the valence states of C and N + belonging to this configuration have therefore been determined 
from the semiempirical values of the average energy Ear of the configuration and of F2(2p, 2p). As 
for F2(2p, 2p) for this purpose, "corrected values" given in Table 2 of Ref. [7] have been used, while 
the Ear values have been obtained by the same method as described in footnote f to Table 1 of 
Ref. [7], except in that a quadratic function has been used for extrapolation. 

for  R e a c t i o n  (21) w i t h i n  t h e  u sua l  o r b i t a l  a p p r o x i m a t i o n .  In  e i t he r  s ides  o f  

R e a c t i o n  (21), t h e  t w o  a t o m s  c o n c e r n e d  a re  s u p p o s e d  to  be  s e p a r a t e d  inf in i te ly  

f r o m  e a c h  o the r .  M o r e o v e r ,  t h e  sp ins  of  e l e c t r o n s  b e l o n g i n g  to  d i f fe ren t  o rb i t a l s  

o f  a g iven  a t o m  are  s u p p o s e d  to  be  r a n d o m .  Th i s  m e a n s  t h a t  t he  a t o m s  are  in  

va l ence  s ta tes ,  a l t h o u g h  the  v a l e n c y  n u m b e r ,  w h i c h  d e p e n d s  u p o n  the  m a n d  the  n 
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values, is not shown. Thus, the A E  of Reaction (21) may easily be evaluated 
with the data of Table I if A is the atom or an ion of C, N, or O. It is to be 
noted that the Anno-Teruya values [7] of F 2 and G 1 have to be used for 
Eqs. (19) and (20), because some of the data of Table 1 are based on these 
values 1. 

Although we have described all the prescriptions and the data necessary for 
the application of our formulas derived in Section 2, a numerical example should 
facilitate the understanding of our prescriptions. For this purpose, a neutral 
nitrogen atom in its valence state tr 2 tr 2 tr 3 z, V3, where trl, tr2, and tr s are three 
equivalent sp 2 hybrid AO's lying in the xy  plane, will be considered, because this 
is the example adopted in a previous publication [1]. Now, if one would look 
at Table 1, remembering that x, y, and z are equivalent with each other, it should 
not be difficult to find that Eq. (21) as applied to the present example is 

N(sxy2z,  g3)--.N(s2y2z, V 1 ) +  N(x2y2z,  g l ) .  

Therefore, it is rather straightforward to obtain 9.2099 eV as the energy of this 
valence state above the ground state of the nitrogen atom from Eq. (113), by using 
the data of Table 1 and the Gl(2s,  2p) value taken from Table 3 of Ref. [7], since 

: = 0 in the present example. The value obtained for 2 2 = c~a = 1/3 and Cs4 Csl -~- Cs2 
the same quantity with the modified Opik method [1], by using the data which 
are used previously [1] and are the same as those used in the present work, is 
9.2097 eV. This is very close to 9.2099 eV obtained above. 

Appendix 

Addenda and Corrigenda for Previous Work [1.] 

Since a valence state is an eigenstate neither of L 2, S 2, L~, nor of Sz in 
general cases, more than one component of a given multiplet may be involved 
in an expansion of a valence-state wavefunction ~v. This fact has been disre- 
garded in Ref. [1]. Therefore, Eqs. (1) and (2) of Ref. [1] must now be written 
as  

N f r  
~)V = E E Cr,i@r,i (A.1) 

r = l  i= l  

N f r  
q)v = Z • cr, i~P,,i (A.2) 

r = l  i=1 

respectively, where Wr, i is the wavefunction of the i th component of the F th 

multiplet, which is supposed to be in an f,-fold degeneracy if the spin-orbit 

1 As for the G~(2s, 2p) value, it is inevitable to use that of the sp n configurations, since the semi- 
empirical value of this parameter can be determined only for such type of configurations. As for the 
F2(2p, 2p) value, it would be logical to use an appropriate weighted mean of values determined for 
different configurations of a given atom (or ion) if available. For example, the F2(2p, 2p) value to be 
used for the calculation of the R value of Eq. (8), through Eqs. (15) and (19), would be the weighted 
mean of its values determined for the s2p 2 and the sp 3 configurations with weights c~12 _ c~42 and 
1 - c~ + c24, respectively. 
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interaction is neglected and c,,~ is the expansion coefficient, the order notations 
being the same as those used in Ref. [1]. As a consequence, we have 

N fr fs ft 
rbv = 2 2 c,,i~,,, + 2 c,,,~p',.~ + Z c,,iP'~,i (A.3) 

r = l  i = l  i = 1  i=1  
r~s,t 

instead of Eq. (7) of Ref. [1] and similarly for Eqs. (4) and (6) of Ref. [1]. As in 
Ref. [1] s and t refer to the multiplets of the same symmetry by definition and 
~P's,~ and tP't,i must correspond to the same ML and the same Ms values in order 
that they interact to each other. Therefore, it holds that 

and that 

f ~ = f , _ = f  (A.4) 

N f,. 
Ev= ~ ~ rc..zl2@..zl~l~.,> 

r = l  i = 1  
t'~S,t 

f f 
+ ~ ic~,el2<~v~,~l~l~v~,e>+ ~ 2 , , ' Ic,,~l <~vt, i[~)7~l~vt, i> (A.5) 

i = 1  i = 1  

f 
+ Z (c~ct,~+Cs,,C,*,O <%,1~1~'~,,>. 

i = 1  

If the spin-orbit interaction is neglected, the matrix elements involved in Eq. (A.5) 
are independent of/ ,  so that this equation may be reduced to 

rCs,t 

-+ (cLc,,, + c~,~c~3 @;1~1 '#~>, 
i 

which shows that the following replacements are necessary in Eq. (8) of Ref. [1] : 

fr 
IGI 2--> ~ IG,il 2 

i = 1  

f 
I cs[2~ 2 

i = 1  

f 
] ¢t[2 - 4  Z 

i = 1  

f 

C* Ct + C* Cs---~ Z 
i = 1  

Cs,i[ 

I c J  

(A.7) 
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This set of replacements is also necessary in Eqs. (3), (5), (13), (15), and (17) of 
Ref. [1]. Fortunately, however, the conclusions of Ref. [1], including the 
numerical value of Ev(I) - Ev(II) (see Eq. (26) of Ref. [-1]), are unchanged with 
this modification. This is due to the fact that the set of replacements is necessary 
in Eqs. (13) and (15) of Ref. [1] at the same time. 
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